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Abstract

This paper provides a review of the African sea level data set which is limited not only in
size, especially given the great length of the African coastline, but also in quality. The
review is undertaken primarily from Permanent Service for Mean Sea Level (PSMSL)
and Global Sea Level Observing System (GLOSS) perspectives but the conclusions on
the need for major new investments in sea level infrastructure are undoubtedly the same
as would be arrived at through any other approach. Stations to be installed as part of the
Ocean Data and Information Network for Africa (ODINAfrica) programme are described
and a survey of currently existing and planned sea level stations in Africa is presented,

together with information on where data for existing stations may be found.
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1. Introduction

Africa presents a major challenge for environmental monitoring. The historical data sets
of many parameters are limited in size and quality. In addition, while funding can
sometimes be obtained for the installation of new monitoring equipment, resources for

ongoing maintenance can remain hard to find.

Sea level provides a good example of such a challenge. Sea level is an essential
parameter in climate change research, it can be employed in a range of operational
oceanography applications, and it has many practical uses such as in harbour operations
and coastal engineering (IOC 2006a). However, although the benefits of sea level
monitoring have been recognised for many years, the existing African data set is smaller
than that of many other parts of world, and until recently there was little investment in
new equipment that could form the basis of a new African sea level network. This paper
discusses the size and quality of the historical African sea level data set, and gives an

overview of current plans for new investment in the sea level network.

2. The African Sea Level Data Set

Figure 1 exemplifies the challenge faced in sea level recording. It shows the status of

monthly and annual mean sea level (MSL) data received by the Permanent Service for

Mean Sea Level (PSMSL, Woodworth and Player 2003) from locations in the core



network of the Global Sea Level Observing System (GLOSS, Woodworth et al. 2003).
Category 1 sites are those from which data recorded in 2002 or later are included in the
PSMSL data bank. Approximately two-thirds of GLOSS sites worldwide are Category 1.
However, it can be seen that, with the major exceptions of stations in South Africa and of
ocean islands, there are few Category 1 sites in Africa. Of course, there are other ways of
measuring the status of a network, but in this case any other method would result in a

similar conclusion.

A catalogue of data holdings of the PSMSL for Africa can be inspected at

http://www.pol.ac.uk/psmsl while Figure 2 provides a map of locations for which at least

some PSMSL data exist. Figure 3(a) provides a histogram of the length of records
demonstrating that few are longer than 20 years. This is in spite of the record lengths
shown being based on the complete PSMSL data set (called the ‘Metric’ data set in
PSMSL documents) and not the smaller ‘Revised Local Reference’ (RLR) set which
includes only records with reliable datum continuity; we return to this issue below. If one
bears in mind that approximately 50 years of data are required if a long-term trend is to
be calculated with a standard error several times smaller than the 1-2 mm/year associated
with global sea level change and vertical land movements (Woodworth 1990, Douglas
1991), and hence be useful in those studies, then it is obvious just how limited the
African MSL data set is. Figure 3(a) also indicates that approximately half of the records
with less than 20 years originate from the ‘outer African islands’ of the Atlantic and

western Indian Ocean.



Figure 4 presents the annual MSL time series for the six stations in continental Africa
having record lengths over 40 years, with dots shown only for those years sufficiently
complete to allow the computation of an annual mean. The secular trends for the six
stations vary between -0.83 (for Mossel Bay) and 3.05 (for Takoradi) mm/year and
average 1.0 mm/year, at the lower end of the rate of change of 20™ century sea level
reported worldwide (Church ef al. 2001). Three of the six historic records come from
South Africa, and gaps reflect many problems with acoustic gauges in South Africa
during the 1990s. A further 17 stations can be seen in Figure 3(a) as originating from
continental Africa, and having record lengths of 20 or more but less than 40 years. Nine
of these stations are also from South Africa or Namibia; 2 from Egypt; 3 from West

Africa; and 3 are from East Africa as shown in Figure 5.

Figure 5 leads onto two other problems with the available African records. It can be seen
that all three East African time series include dots for fewer than 20 annual MSL values,
even though there is sea level information in the PSMSL data set for each station for at
least 20 years. The years of data which have been dropped from the figure are those
which are insufficiently complete to allow the computation of an annual MSL, and/or are
those for which the datum of the sea level measurements is unknown relative to that of

other years. Similar problems beset the records from Lagos, Nigeria and other locations.

The datum continuity implied by the PSMSL RLR data set is of crucial importance to the
study of the rate of change of coastal sea level. Figure 3(b) presents a histogram of the

number of years of data with datum continuity for African stations in the RLR data set. If



tide gauge authorities provided documentation for every station-year of data concerning
the datum to which measurements were made, then Figures 3(a) and (b) would be
identical. In practice, one can see that, not only is Africa deficient in the quantity of

available data, but the ability to make maximum use of the information is much reduced.

The records from the ‘outer African islands’ of the Atlantic and western Indian Oceans
tend to be of better quality but are in most cases only a decade long and contain gaps
which partly reflect difficulties of access for maintenance. Nevertheless, some of them
have been included in recent discussions of sea level trends (e.g. Woodworth 2005) and

of the factors responsible for interannual variability of sea level (e.g. Andrew et al. 2006).

3. Possible Uses of the Present and Future Sea Level Data Set

Even though the present-day African data set may be limited, it is essential that it is
studied in as many ways as possible in order to gain maximum insight into the reasons for
sea level change around the continent, and to provide examples of the potential benefits
to society of investment in sea level monitoring. It is important to emphasise that the uses
of sea level data for science and for practical purposes are inter-dependent. For example,
knowledge of long term sea level rise needs to be input into the engineering design of
coastal structures, many of which will have a lifetime of many decades or a century. In
addition, insight into the rate of sea level rise may also help in the understanding of

complex coastal processes, such as sedimentation and erosion.



Even without the best possible datum information required for the computation of sea

level trends, users of the African data set can study many aspects of sea level variability.

For example:

As long as data are correctly time-tagged, then a near-complete description of
diurnal and semi-diurnal tides can be extracted, enabling production of tide
tables. Of course, ‘tidal constants’ are available from many African ports
(sometimes based on brief 19" century measurements) but there is little
information on how the ‘constants’ change from year to year and therefore on the
uncertainties in tidal predictions.

The higher-frequency (e.g. hourly through to weekly) components of non-tidal
variability can be extracted from the ‘tidal residuals’. With some oceanographic
insight, the non-tidal time series can provide information on the statistics of
storm surges for input to the design of flood protection measures, and on ocean
processes such as coastal upwelling. The residuals can be employed to validate
predictions of tide-surge numerical models, which can in turn be used in flood
warning, of special importance to major population centres in developing
countries (e.g. Flather 1994). In Africa, this applies in particular to cities such as
Lagos or Alexandria.

One can usually determine the characteristics of seasonal MSL variability. In
parts of Africa the seasonal cycle of MSL can have a range of the order of 20 cm
and needs to be factored into seasonal sea level forecasts. Figure 6 shows the

amplitudes of the annual cycle of MSL and the month at which the cycle peaks



using currently available data and based on the methods of Tsimplis and
Woodworth (1994). Amplitudes are near zero along parts of the South African
coast, as discussed by Brundritt (1984), while they can exceed 10 cm in the Red
Sea. Contrasts in the time of year at which the cycle peaks can be seen between
West and East Africa and between the Red Sea and the Mediterranean. One looks

forward to seeing this exercise repeated with a more copious African data set.

Future sea level installations can not only provide ‘delayed mode’ information that can be
employed as described above, but also ‘real time’ data which opens up many possibilities
for their use in port operations and a wide range of operational oceanography (Flather
2000). In addition, access to real-time data tends to result eventually in higher quality

delayed mode information, as faults can be identified and remedied immediately.

The PSMSL data set referred to above contains monthly and annual MSL. Anyone
interested in assessing the utility of higher frequency data (either delayed mode or real
time) to their applications should investigate the historical information in the GLOSS
Delayed Mode data set at the British Oceanographic Data Centre (accessible via the
PSMSL web page), and in the University of Hawaii Sea Level Center (UHSLC) Research

Quality Data Set (http://www.soest.hawaii.edu/UHSLC/). Real time (or near real-time)

data have many uses that may not be well-known. For example, tide gauge data are
nowadays the main means of calibrating sea level information from satellite radar

altimeters (e.g. Mitchum 2000, Aman and Testut 2003, Aman et al. 2006).



4. Recent Developments

It would be incorrect to imply that there has been no investment at all in African sea
levels. Several countries (e.g. Tunisia, Morocco, Nigeria, Kenya) have allocated, or plan
to allocate, significant funding for sea level equipment. However, where such
investments have already been made, our experience is that data are not always shared

with neighbouring countries or made available to the international community.

One recent, encouraging example of collaboration was provided by the installation of a
pressure tide gauge by the National Institute of Oceanography (NIO), India at Takoradi in
Ghana. Although the Takoradi station has since been enhanced by a new radar and
pressure system (see below), the NIO gauge proved the value of recording at this site, by
providing a new set of tidal and non-tidal residual information and by the clear

identification of the 2004 Sumatra tsunami (Joseph et al. 2006).

However, on a wider international level, there has been concern for some time that major
gaps exist in the sea level network in Africa (e.g. WSSD 2002) and that, even where tide
gauge stations exist, the equipment is often old. The opportunity has been taken on
several occasions to seek new international resources, without great success. However, in
2003, funding became available from the Government of Flanders (Belgium) and the
Intergovernmental Oceanographic Commission (IOC) in a programme called Ocean Data
and Information Network for Africa (ODINAfrica) for the establishment of about ten new

and refurbished stations (ODINAfrica 2003; Aman et al. 2006).



In December 2004, the project became more urgent following the Sumatra Tsunami, with
the tsunami having been observed clearly along East and West African coastlines
(Merrifield et al. 2005, Joseph et al. 2006). Concerns were subsequently expressed of
tsunamis originating closer to East Africa, for example in the Makran Subduction Zone in
the NW Indian Ocean. It became clear that any new equipment installed in Africa had to
be suitable for tsunami network applications (‘tsunami enabled’). In addition, training
programmes had to be provided so that local people could effectively maintain any

equipment installed.

Several sites in Africa and in countries in the NW Indian Ocean have recently received
new equipment funded through the GLOSS and ODINAfrica programmes. The tide
gauge hardware was selected and installed with the assistance of the Proudman
Oceanographic Laboratory (POL) in collaboration with colleagues at IOC and the French
and South African Hydrographic Offices. Each site received a consultant visit prior to
delivery of equipment so that any local difficulties could be resolved, and most visits

resulted in detailed reports available from www.gloss-sealevel.org. The first two new

sites installed were at Pemba and Inhambane (Mozambique) in 2005, followed by
Takoradi (Ghana), Nouakchott (Mauritania) and Karachi (Pakistan) in 2006. Three
existing sites in South Africa were upgraded in early 2007, in addition to new
installations in Djibouti and Pointe Noire (Congo). At the time of writing equipment is

being delivered to Aden (Yemen), and will soon be delivered to Port Sonara (Cameroon),
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and consultant visits have been carried out to Alexandria (Egypt) and to possible sites in

Morocco.

The equipment employed at most sites consists of a radar tide gauge, which measures sea
level from the time-of-flight of the radar pulses reflected back from the sea surface. This
sensor is believed to provide data with little instrumental drift, and, therefore, to result in
sea level information suitable for tidal studies and research into sea level changes due to
climate change. Nevertheless, regular checks on possible drifts in the radar sensor data
are made with the use of either spot measurements in nearby stilling wells or observations
with tide poles. In addition, the station is equipped with a sub-surface pressure sensor.
This functions as a backup to the radar gauge, it can record any water level which
exceeds the height of the radar sensor, and it can sample at a higher rate. Consequently, it
can be regarded as the main ‘tsunami sensor’. The final important component is the
satellite transmission equipment which sends real-time data back to centres in Ostende
(Belgium) and Hawaii (USA) and to any other centre which can access the Global
Telecommunications System (GTS). For examples of ODINAfrica real time data, see

http://www.vliz.be/vmdcdata/iode/ and also the UHSLC web site given above. It is

planned that a subset of stations initially will also be equipped with Global Positioning
System (GPS) receivers for the measurement of land movements: upcoming installations
are planned at Pemba and Inhambane in Mozambique and at Takoradi in Ghana in a
collaboration between IOC and the University of Beira Interior, Portugal. These GPS
receivers and those at other tide gauge sites

(http://www.sonel.org/stations/cgps/surv_update.html provides a survey of such stations
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worldwide) will provide an important contribution to the development of an African

Geodetic Reference Frame (AFREF, http://geoinfo.uneca.org/afref/).

As an example of the good progress being made, at the time of writing, and as an
indication of remaining problems, Figure 7 shows the entire PSMSL monthly MSL
values held for Takoradi. The data up to 1965 are the same as those which are shown as
annual means in Figure 4. After that date, there were a number of problems reported with
the gauge and it is clear that the data values returned were not realistic. However, if the
original tide gauge charts survive and if ancillary tide pole information is available, then
it would in principle be possible to reanalyse the time series. This emphasises the
importance to present-day studies of what is called ‘data rescue’ or ‘data archaeology’.
The dot shown in Figure 7 shows a preliminary estimate of MSL at Takoradi for the first
3 months of 2007, using data from the new ODINAfrica radar gauge. The dot is
consistent with information from the earlier, less-precise NIO pressure gauge, and can be
seen to be roughly consistent with the trend indicated in the earlier part of the record, and
suggestive of an overall rate of rise of sea level of several mm/year. This is a higher rate
of rise than one might expect and may arise from local geological conditions such as
settling of reclaimed land. Such a finding is interesting but clearly a longer record from
the new gauge is required for further study, in addition to GPS information to determine
the magnitude of vertical land movements. Meanwhile, the new data have already been
used to determine tidal constants for the port and study the character of non-tidal

variability.
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The North African coast has fewer sea level stations and a smaller historical data set than
almost any other coastline in the world. Any new sea level information (whether tidal,
surge, MSL or tsunami-related) collected from this area will be great interest to scientists
and coastal engineers. Tsunami risk to northern African and European coasts is of
considerable current concern with both European Union and IOC projects in progress
(EC 2005, IOC 2006b). Tsunamis of various sizes have occurred in the recent past in
southern Europe and North Africa. Examples in the historical record include the Lisbon
event of 1755 (e.g. Baptista et al. 1998), a number of damaging tsunamis at Alexandria,
such as due to the cataclysmic Santorini tsunami of 1638 BC and to lesser but still
significant ones in 365 and 1303 AD (Hamouda 2006), and the Algerian earthquake and

tsunami of 2003 (Alasset et al. 2006).

At present, African real time tide gauge satellite telemetry is based on the meteorological
satellite (e.g. Meteosat or GOES) Data Collection Platform (DCP) system which is used
in the Pacific Tsunami Warning System. However, tsunami travel times are much shorter
in the Indian and Atlantic Oceans and Mediterranean Sea and the latency in DCP
transmissions is less acceptable. As a result, IOC and POL have been working with
INMARSAT to make use of its Broadband Global Area Network (BGAN) technology
which provides ‘always on’ connectivity from almost anywhere on the Earth’s surface

(Holgate et al. 2007).
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5. Summary

Tables 1 and 2 and Figure 8 provide an overview of existing sea level stations in Africa,
some of which will inevitably be in better condition than others. Also included are
stations for which we believe there exist realistic plans for installations and upgrades in
the near future. Even with the new installations, the network will remain sparse compared
to those in many other parts of the world, but it is indeed gratifying that there have been
significant recent improvements. One hopes that the progress in installations will

continue and that a greater amount of international data sharing will take place.

However, the ODINAfrica (or any other) network will not be a success without
consideration of factors other than initial investment in hardware. Such factors include
the development of a local skill base to maintain the equipment, the national commitment
to ongoing funding for the maintenance, and the collective ability to make maximum use
of products generated from the data. This implies local technical training, including a
recognition of the importance of benchmark infrastructure and regular calibrations which
are sometimes overlooked in gauge operations, and yet are essential to the long-term
datum control of a sea level time series. GLOSS/ODINAfrica training courses and
materials and local training at the time of installations can help in this regard.
Appreciation of the importance of the monitoring at government and national academic
level is essential. Sea level networks have been installed previously at great expense in

other parts of the world, but have subsequently failed due to a lack of resources for
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maintenance after the first few years, and also to a lack of local appreciation of the
importance of a coherent network. It is essential that previous mistakes are not repeated

in Africa.
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Figure Captions

1. Map of GLOSS Core Network stations in Africa. Those marked by stars are Category
1 (relatively recent data having been received by the PSMSL). Categories 2 and 3
indicate that historic but no recent data exist, while Category 4 stations have no historic
or recent data at all. Categories are defined as of October 2006, see www.gloss-

sealevel.org for details.

2. Map indicating locations in Africa for which some sea level data can be found in the

PSMSL data set (see www.pol.ac.uk/psmsl for more details).

3 (a) Histogram of record lengths of stations from continental Africa and ‘outer islands’
in the PSMSL Metric data set. Black shading indicates holdings from continental Africa
alone. (b) The corresponding histogram for stations with data in the PSMSL Revised

Local Reference data set.

4. Annual MSL time series for the six stations in continental Africa with 40 or more years
of data (Alexandria, Egypt; Ceuta, Spanish North Africa; Takoradi, Ghana; Port Nolloth,
Simons Bay and Mossel Bay, South Africa). The Takoradi record in this figure has been
truncated at 1965 when major problems with the gauge were reported. Five of the six are
from the PSMSL RLR data set; the Alexandria record shown is from the Metric set but
there is good reason to believe that the data were measured to the same datum. Each time

series contains an arbitrary offset.
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5. Annual MSL time series for 3 medium-length records in East Africa (Maputo,
Mozambique; Zanzibar, Tanzania; Mombasa, Kenya). Each time series contains an

arbitrary offset.

6 (a) Amplitude of the annual cycle of MSL at stations with at least 3 years of data in the

PSMSL Metric data set. (b) Time of year at which the annual cycle peaks.

7. Monthly mean sea levels reported from Takoradi, Ghana expressed relative to the

PSMSL RLR datum for the station. The dot represents MSL for the first 3 months of

2007 from a newly installed ODINAfrica tide gauge.

8. Map of the existing and planned sea level stations in Africa as described in Tables 1

and 2 (with the exception of Marion Is. which is off the map to the south).
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GLOSS status within the PSMSL dataset
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Figure 1
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Distribution of PSMSL Stations

Figure 2
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Figure 4
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Figure 6
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Figure 7
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Existing and Planned Sea Level Stations

Figure 8
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