

The global conveyor belt

Thermohaline Circulation

Visual representation of global ocean circulation highlighting the down-welling in the North Atlantic and the return of warm surface waters from the North Pacific. Credit: Grid Arendal and UNEP

The thermohaline catastrophe

Air temperature change due to North Atlantic freshening (HadCM3 model experiment)

The Atlantic meridional overturning circulation (MOC) in the OCCAM model

The Atlantic meridional overturning circulation (MOC) in the OCCAM model

The Atlantic MOC - Geostrophy

At depths below the Ekman layer, the zonally-integrated northward transport is proportional to the pressure difference between the eastern and western boundaries:

$$T(z) = \frac{p_e(z) - p_w(z)}{\rho f}$$

Cross-section (looking north) showing the topography of the North Atlantic at 42N

Meridional transport determined from western boundary pressure (42N)

Inferred from western boundary pressure

North of the Gulf Stream inter-annual meridional transport variability can largely be determined from bottom pressure on the western boundary.

Meridional transport determined from western boundary pressure (42N)

Actual
Inferred from western boundary pressure

North of the Gulf Stream inter-annual meridional transport variability can largely be determined from bottom pressure on the western boundary.

Seems to be a general result.

EOF analysis of bottom pressure

EOF analysis of bottom pressure

The relationship between bottom pressure and sea level

The relationship between bottom pressure and sea level

Meridional transport and western boundary sea level

Transport based on sea level regression

Meridional transport and western boundary sea level

OCCAM sea level

Observed sea level

Leading interannual EOF

Percent of variance accounted for

Meridional transport and western boundary sea level

Leading EOF of interannual sea level variability from tide gauges and POV accounted for. Repeated for OCCAM.

Corresponding principle components

A possible reconstruction of past MOC variability?

year

Inter-annual upper layer transport variability in ORCA (1958-2004)

Reconstructing ORCA transport variability using sea level at GLOSS station positions

Reconstructing ORCA transport variability using sea level at GLOSS station positions

Reconstructing ORCA transport variability using sea level at GLOSS station positions

50N transport reconstruction based on St. Johns, NF sea level in ORCA

St Johns interannual correlation patterns in ORCA

0.9 0.8 0.7 0.6 0.4 0.3 0.2 -0.1-0.2 -0.3-0.4-0.5

Observed vs. modelled sea level at St. Johns, NF

Observed vs. modelled sea level at St. Johns, NF

ON transport reconstruction based on Itaparica, Brazil sea level in ORCA

Itaparica, Brazil interannual correlation patterns in ORCA

Summary

- Models show interannual Atlantic meridional transport variability can be calculated from western boundary pressure.
- This leads to a close relationship between MOC variability and sea level along the east coasts of North/South America.
- North Atlantic 2 cm sea level increase (decrease) for every 1 Sv decrease (increase) in the meridional transport strength.
- Transport at 50N can be reconstructed with 77% skill from St Johns tide gauge.
- Transport in the South Atlantic can be reconstructed with up to 73% skill using the Itaparica (Brazil) tide gauge.
- Past variations fluctuations up 5 Sv with s.d. of 1.25 Sv.