Exploring extreme sea level events

Melisa Menéndez

Environmental Hydraulics Institute (IH-Cantabria), Universidad de Cantabria, Spain

menendezm@unican.es

with collaborations of:

- Fernando Méndez
- Roberto Mínguez
- Philip Woodworth

Exploring extreme sea level events

Exploring Climate variability of Extreme Sea level events by using Non-stationary Extreme Statistical models

EXTREME VALUE THEORY

Statistical discipline that develops a set of techniques and methods to quantify and model the stochastic behavior of extreme events, either in magnitude or frequency.

[..the most important statistical discipline for the applied sciences over the last 50 years...]
[..unique as a statistical discipline for describing the unusual rather than usual...]

Coles, 2001

 $R = Return Period \rightarrow Y_R$

$$Prob = 1 - \frac{1}{R}$$

Focusing on extreme sea levels..

Contribution to Changes on Extremes?

[Woodworth and Blackman, 2004] [Menendez & Woodworth, 2010]

...

MEAN SEA LEVEL

TIDE

STORMINESS

- Storm SURGE
- WAVES-Setup

[Marcos et al., 2009] [Bromisrki et al., 2003] [Bernier & Thompson, 2006]

...

Octo

EXTREME SEA LEVEL DATA SOURCES:

- ➤ IN-SITU

 Tide-Gauges..
- > REMOTE

 Satellite altimeter..
- > MODELS
 Ocean models...

TIME SCALES:

- Short-term; seasonality (within a year)
- Mid-term; inter-annual (irregular fluctuations, modulations)
- Long-term; decadal to secular changes → TRENDS

SPATIAL SCALES:

- Local
- Regional
- Global

SOME APPLICATIONS..

Including Mean Sea level Uncertainty

Data: San Francisco Tide-gauge record (Noaa) 1900-present hourly time series

Joint Probability Method: F(extreme SL / MSL rise)

Influence of different Climate variability time scales

Time-dependent Generalized Extreme Value distribution (GEV)

$$F(x;\theta) = \exp\left\{-\left[1 + \xi\left(\frac{x - \mu}{\psi}\right)\right]^{-1/\xi}\right\}$$

$$\mu(t), \psi(t), \xi(t)$$

 $\mu \rightarrow location$

San Francisco Tide-gauge record

Hourly time series from 1900

[Méndez et al., 2007]

Newlyn Tide-gauge record
Hourly time series from 1915

[Menendez et al., 2009]

Influence of different Climate variability time scales

San Francisco Tide-gauge record Hourly time series from 1900

Newlyn Tide-gauge record Hourly time series from 1915

Setup

Analyzing Trends on extremes

Pareto-Poisson extreme model (exceedances over a threshold)

60 yr hourly reconstruction of flooding level time

series

RUN-UP

Waves

Tide

SEA LEVEL

Storm Surge

Regional MSL

423 analyzed Nearshore sites

Analyzing Trends on extremes

Analyzing ENSO phenomena influence

[Menendez & Woodworth, 2010]

Analyzing Trends on extremes

total elevation

total elevation after removal of annual medians

CONCLUSIONS

- Main critical factors for an adequate analysis of extreme sea level changes:
 - Long & high quality records
 - Choose the best statistical method for each goal
 - Understanding shorter time-scales for a good evaluation of trends
- > The time-dependent extreme analysis is valid for different sea level variables and data-sets
- > The time-dependent model provides climate information about the behavior of extreme sea levels.

Thanks for your attention!

Comments? Questions?