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CHAPTER 1

TIDES AS WAVES

1.1 What is the tide?

Every reader of this book will have some notion
of what is meant by the word “tide” as applied to the
ocean. Some will think of the daily or twice-daily
rise and fall of the water on the face of a cliff or
around the pilings of a pier, others of the advance
and retreat of the water over a shallow foreshore,
and still others may think of the variable horizontal
flow of the water that carries their ship off course,
sometimes in one direction, sometimes in another.
The tide is all of these things, but more generally
we will define the ocean tide as the response of the
ocean to the periodic fluctuations in the tide-
raising forces of the moon and the sun. This re-
sponse is in the form of long waves that are gener-
ated throughout the ocean. They propagate from
place to place, are reflected, refracted, and dis-
sipated just as are other long waves. Thus it is that
the tide observed at a particular place is not locally
generated, but is the sum of tide waves arriving
from all over the ocean, each modified by its expe-
riences along the way. To better understand the tide
it will therefore be desirable to consider the charac-
teristics of long waves as well as those of the
tide-raising forces that produce them.

1.2. Waves

Wave motion in or along a medium is characte-
rized by:

a) periodic vibration but no net transport of the
particles in the medium,

b) propagation of energy along or through the
medium, and

c) arestoring force that opposes the displacement
of the particles of the medium.

When a sound wave travels through air, the parti-
cles experience a to-and-fro vibration, and the re-
storing force is provided by the pressure gradient.
When a sound wave travels through a solid, the
particles also -experience a to-and-fro vibration,
and the restoring force is provided by the elasticity
of the material. When a wave travels along a taut

string, the particles experience a transverse vibra-
tion, and the restoring force is provided by the
tension in the string. When a wave travels along the
surface of a body of water, the particles experience
both a to-and-fro and an up-and-down vibration,
and the restoring force is provided by a combina-
tion of gravity (acting through the hydrostatic pres-
sure) and surface tension. Surface tension is the
dominant restoring force only for ripples with 2 cm
or less between crests, and these are called “capil-
lary waves.” For all longer water waves the domi-
nant restoring force is gravity, and for this reason
they are called “gravity waves.” Surface chop, sea,
swell, tsunamis, and tides are all gravity waves.
The terminology used to describe waves is illus-
trated in Fig. 1a and b. In Fig. la the wave form is
viewed perpendicular to its direction of travel at an
instant in time; Fig. 1b depicts the variation in
water level at a fixed location over an interval of
time as the wave passes. The wavelength (\) is the
distance between successive crests or successive
troughs. The range (R) is the vertical distance of

(a)

(b)

0 T 2T 3T

Fig. 1. Sinusoidal wave form as seen (a) in space at an instant
of time and (b) at a fixed location over an interval of time.
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the crest above the trough, or of the high water
(HW) above the low water (LW). The terms crest
and trough are more commonly used in connection
with waves that are short enough to reveal their
wave form to the eye. The terms HW and LW are
more commonly used only in connection with the
tide waves, which are much too long to reveal their
form to the eye. The amplitude (H) is one half of the
range. The period (T) is the interval between the
passage of two successive crests, or between the
occurrence of two HWs: successive troughs or any
other identifiable parts of the wave form could
equally well be used to define the period. The
frequency (f) is the number of periods (or cycles)
occurring per unit time; therefore f = 1/T. The
wave speed (c) is the horizontal rate of advance of
all parts of the wave form (crests, troughs, etc.).
Since a travelling wave advances one wavelength
in one period, ¢ = MT.

A sinusoidal wave form, such as that in Fig. 1,
can be generated as the product of the amplitude
times the sine or cosine of a continuously increas-
ing angle, called the phase. The angle by which the
phase of a wave lags behind the phase of a reference
wave is called the phaselag. In tidal work, the
cosine form is most commonly used, so that in Fig.
b the height above mean water level (MWL)
would be expressed as

“h(t) = H cos 2mft — g )

With respect to a wave with phase 27ft, h(t) would
be said to have a phaselag of /2. The rate at which
the phase increases is called the angular speed (w),
and o = 2mfradians per unit time. In tidal litera-
ture the angular speed is usually quoted in degrees
per hour and given the symbol “n.” The wave
number (k) is the rate at which the phase changes
with distance, and ¥ = 27/\ radians per unit
distance.

1.3. Surface gravity waves

It would admittedly be a rare occasion on which
the actual sea surface could be adequately repre-
sented by a simple sinusoidal wave as in Fig. 1.
However, quite complicated sea states may be rep-
resented as a composite of many such component
waves, each with its own amplitude, wavelength,
and direction of propagation. A long swell running

on an otherwise calm sea closely resembles a single
such component wave. Because the tide can usually
be adequately represented as the superposition of a
manageable number of these component waves, we
will restrict our investigation of surface gravity
waves to those of sinusoidal form.

A wave that is moving across the surface as a
train of parallel crests and troughs is called a pro-
gressive wave . If it is moving in the positive
x-direction, the height at distance x and at time 7 is
given by
H cos 2 (% - %)

(1.3.1) hx,n = N

= H cos (ot — kx)

This expression may be verified by considering that
for an observer travelling with the wave speed
¢ = MT the phase would remain constant, because
the increase due to the increase in 7 is offset by the
decrease due to the increase in x. If the wave train is
moving in the negative x-direction, the height is

(1.3.2) hy(x,t) = H cos 2w (% + ’i)
= H cos (wt + kx)

The superposition of two progressive waves that
have the same amplitude and frequency but are
travelling in opposite directions produces what is
called a standing wave. Adding equations (1.3.1)
and (1.3.2) and invoking some trigonometric rela-
tions give the following expression for the standing
wave form:

(1.3.3) hy(x,t) = hy + hy
= (2H cos 2wf)-(cos 211'71_)

Figure 2 illustrates the formation of a standing
wave from two oppositely directed progressive
waves. From equation 1.3.3 and Fig. 2 it is clear
that the period and wavelength of the standing wave
are the same as those of the component progressive
waves, that the amplitude of the rise and fall of the
surface varies from zero to 2H according to the
value of cos kx, and that the phase of the rise and
fall is everywhere the same or opposite, according
to the sign of cos kx. The places in the standing
wave form at which the amplitude is zero are called
nodes, and those at which it is maximum are called
anti-nodes. The space between nodes is called a
loop. Within each loop the phase is the same, but is
different by 180° from that in adjacent loops. A
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Fic. 2. Formation of a standing wave from two oppositely directed progressive
waves. Open arrows show particle velocities; single line arrows show direction of

wave propagation.-

standing wave is frequently formed by the reflec-
tion of a progressive wave back upon itself, which
is why the tide usually displays the character of a
standing wave in coastal bays and inlets. In practice
we will never encounter a pure progressive or
standing wave; every wave will have some of the
characteristics of each. The tide in the Strait of
Belle Isle is an example of a regime that is neither
purely standing nor progressive. The tide propagat-
ing out from the Gulf of St. Lawrence combines
with the tide propagating in from the Atlantic, but,
since the two do not have the same amplitude, only
a partially standing wave is formed. At a true node
there should be zero amplitude and a reversal of
phase on either side: in the Strait of Belle Isle there

is a degenerate node, exhibiting reduced amplitude
and rapid spatial change in phase. When a standing
wave is formed by reflection, the standing char-
acter is most nearly perfect near the reflecting bar-
rier, because away from the barrier the incident
wave has a larger amplitude than the reflected wave
as a result of attenuation along their paths.

1.4 Long and short waves of small amplitude

In our theoretical consideration of waves we will
implicitly assume that the amplitude is small with
respect both to the wavelength and to the depth.
The amplitude of a tide wave is always small with
respect to its wavelength, but not always with re-




4

spect to the depth, so we must expect some distor-
tion of our results in shallow water. It can be shown
that the wave speed of a sinusoidal wave in water of
total depth D is

(1.4.1) ¢ = [(g/k) tanh kD]"

where g is the acceleration due to gravity, and that
the horizontal particle motion (wave current) and
the pressure associated with the passage of the
wave both decrease exponentially with the depth by
the factor exp (-kz), z being the depth from the
surface. The magnitude of kD ( = 2mD/\) thus
provides a criterion by which to categorize waves.
Short (or deep-water) waves are those for which the
wavelength is much less than the depth, and long
(shallow-water) waves are those for which the
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Fic. 3. Orientation of waves parallel to beach, by refraction.

TabLE 1. Properties of long and short waves.

wavelength is much greater than the depth. It must
be remembered that the terms are relative, not
absolute, and that a short wave may become a long
wave on entering shallower water. For short waves
kD is very large, and tank kD is close to unity, so
that the wave speed becomes cs = (g/k)”. For long
waves the value of kD is very small, and tank kD is
approximately equal to kD, so that the wave speed
becomes ¢; = (gD)”. Because for short waves the
speed depends on the wavelength, they experience
dispersion, the longer component waves travelling
faster and becoming dispersed from the shorter
component waves. This is why the long swells
(forerunners) from a distant storm arrive first. Long
waves do not experience dispersion, their wave
speed depending only on the water depth. They do,
however, experience refraction if one part of the
wave front is travelling in shallower water than the
others. The part of the wave front in the shallower
water slows down, allowing the rest of the front to
pivot around, changing the direction of propaga-
tion of the wave. As illustrated in Fig. 3, refraction
is responsible for orienting waves parallel to
beaches before they break on the shore. Short
waves do not experience refraction; but, of course,
they may become long waves on entering shallow
water and then be refracted as in Fig. 3.

The particle motion and the pressure fluctuation
associated with the passage of a short wave de-
crease rapidly with depth, being only about 4% of
their surface values at a depth of half a wave length.
The particle motion and pressure fluctuation
associated with the passage of a long wave are,
however, virtually uniform over the depth (except
for the frictional effect near the bottom). These are
important facts to consider when planning sub-
surface pressure or current measurements. Since
surface tides are long waves even in the deepest
parts of the ocean, their signal may be detected by
sensors at any depth, whereas the signal from short
waves is effectively filtered out below a depth of a

Short-waves
(deep-water)

Long-waves
(shallow-water)

A<D
(glk)”

Definition
Wave speed
Particle motion
Wave pressure
Dispersion Yes
Refraction No

Decreases with depth.
Decreases with depth.

A>D

(gD)”

Uniform with depth.
Uniform with depth.
No

Yes




half a wavelength. The properties of long and short
waves are summarized in Table 1. There are, of
course, waves that are intermediate between the
long and the short waves, and their wave speed is
given by equation 1.4.1. However, since tides are
always long waves, we shall confine our further
considerations to long waves.

1.5. Particle motions in long waves

In this section we will develop expressions for
both the wave speed and the particle speed ina long
surface wave. This is being done partly to demon-
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Fic. 4. Diagram to illustrate development of expression for
wave speed and particle speed in long progressive surface
wave.

strate the physical principles, and partly to empha-
size the relation between these two speeds and
between the particle motion and the wave form. We
assume that the particle speed is uniform over depth
and is a to-and-fro motion with the same period, but
not necessarily the same phase, as the surface rise
and fall. Consider a progressive wave moving from
left to right in Fig. 4, with surface amplitude H. Let

the particle speed have amplitude U and phaselag 6
with respect to the surface elevation. Therefore

(1.5.1) h(x,n) = H cos (ot — kx)
u(x,t) = U cos (wt — kx — 9)

In Fig. 4, MNOP is one side of a rectangular prism
of unit thickness perpendicular to the page, with
length dx, and height D + h. Its volume increases
at the rate (9h/df)dx. By the principle of continuity
(conservation of matter) this must be equal to the
rate at which water is entering minus the rate at
which it is leaving through the sides of the prism.
Neglecting the small height, &, with respect to the
large depth, D, the rate at which water is
accumulating inside the prism is

Dlu(x,0)] - Dlu(x,t) + %)dx] = — D (Hydx.
ox ox

Equating these two rates gives

(1.5.2.) ohldt = — D@k
dax

Differentiating the. expressions in 1.5.1 and sub-
stituting in 1.5.2 yields

— H wsin (wt—kx) = —DkU sin (ot — kx—-0)
whence

= = (Hy (wy_ H,.
(1.53) 6 =0,and U (D)(k) (D)c.

Consider now a particle of water on the surface and
assume that its acceleration equals the local
acceleration, du/dt (a reasonable assumption for
waves of small amplitude). The force per unit mass
acting on the particle is the component of gravity
parallel to the surface, -g(dh/dx). By Newton’s law
of motion these two quantities must be equal,
whence, upon differentiating the expressions in
(1.5.1) and using the relations given in 1.5.3,

du _ _ ,9h
Jat g(ax)

or - w(%’)(g) sin (wf — k)

= — gkH sin (ot — kx)
SO
(1.5.4) (‘f)2 = gh = ¢*

From 1.5.3, since © = 0, we have the very
important result that in a progressive wave the
particle motion is in phase with the surface wave
form; so that the particle speed is greatest in the
direction of the wave travel at the crest, greatest in
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the direction opposite to the wave travel at the
trough, and zero midway between crest and trough.
The particle speed beneath any point in the wave is
in fact the wave speed multiplied by the ratio of the
wave height to the depth. The wave speed is given
by 1.5.4asc = (gD)”, as previously deduced from
the more accurate expression in 1.4.1.

We will now examine the relation between parti-
cle motion and wave form in a standing wave. Just
as we obtained the expression 1.3.3 for the form of
a standing wave by adding the forms of two op-
positely directed progressive waves, we may
obtain the expression for the particle motion by
adding the particle motions of two oppositely di-
rected progressive waves. The particle speed in a
wave travelling to the left is in phase with the wave
form, and so must be given a negative sign. The
addition gives the standing wave particle motion as

(1.5.5) udx,t) = U cos(wt—kx)—U cos(wt + kx),
or u(x,t) = 2U sin ot - sin kx

From equation 1.3.3 we had the standing wave
height as

(1.5.6) hy(x,t) = 2H cos ot - cos kx

Recalling that the sine of an angle is 90° out of
phase with the cosine, we see froma comparison of
1.5.5 and 1.5.6 that in a standing wave the particle
speed has maximum amplitude where the surface
rise and fall has zero amplitude (i.e. at the nodes),
and has zero amplitude at the anti-nodes. We also
see that the particle speed achieves its local max-
imum everywhere when the wave form is flat, and
is everywhere zero when the surface has its max-
imum distortion (i.e. at HW and LW). Figure 2
illustrates the relations between particle motion and
wave form in progressive and standing waves.

To demonstrate that tide waves are indeed long
waves (A>D) and to emphasize the relation be-
tween particle speed (tidal stream) and wave speed,
Table 2 lists the wavelength, wave speed and parti-
cle speed of a tide wave of one-metre amplitude and
12-h period travelling in various depths of water.
Comparison of the values in the last two columns
shows that the wave speed is everywhere much
greater than the particle speed, but that while the
wave speed decreases, the particle speed increases
with decreasing depth of water. This is one reason
that tidal streams are much more evident in coastal
waters than in the open ocean.

1.6. Basin oscillations

Almost every physical system has a natural fre-
quency at which it will oscillate when disturbed
from its rest position or shape, until friction brings
it once more to rest. The most obvious example is
the pendulum (or the hair-spring or the quartz crys-
tal) in a clock, whose natural period of oscillation is
the time unit that is summed by the clock to record
the passage of time. If a system is left undisturbed
to oscillate at its natural frequency, it is said to be in
free oscillation; if it is forced to oscillate at the
frequency of an imposed force, it is said to be in
forced oscillation. When the frequency of the driv-
ing force is equal to the natural frequency of the
system, a large amplitude response may be
obtained with the input of very little energy. This
phenomenon is called resonance, and is explained
by the fact that the driving force and the restoring
force within the system act mostly in unison at
forcing frequencies close to the natural frequency
of the system, and mostly in opposition to each
other at forcing frequencies far from the natural
frequency. A simple example of a resonant system

TaBLE 2. Characteristics of a tide wave of 12-hour period and 1 metre amplitude in various depths.

Depth Wavelength Wave speed Particle speed
(m) (km) (my/s) Amplitude (mvs)
5 000 9 600 220 0.04
500 3 000 70 0.14
50 960 22 0.44
5% 300* 7* 1.40%

*Since this depth is not very large w.r.t. the wave amplitude, the wave would be distorted, and these values
inaccurate. '




is a child seated on a swing that is being pushed by a
friend; since the swing is pushed only at the end of
each cycle, the frequency of the driving force is
automatically matched to the natural frequency of
the swing. The clock pendulum is another resonant
system, operating on the same principle as the
swing. A person singing in the shower may notice
that a particular note causes a delightful reverber-
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FiG. 5. Free oscillation, or seiche, in (a) a closed basin and (b)
a basin open at one end.

ation; this is because the column of air in the shower
stall is resonant at the frequency of that note.

The free oscillation of the water in a closed basin
(bathtub, lake, etc.) takes the form of a standing
wave with an anti-node at each end of the basin and
one or more nodes between (Fig. 5a). If there is
only one node, the length of the basin is half a
wavelength, and the natural period of oscillation is
given approximately as

(161 T, =2L = 2L

c (gD)"

where L is the length of the basin and D is an
average depth. Although it is less common, a
closed basin could oscillate across its width as well
as along its length. The free oscillation of the water
in a basin open at one end (harbour, bay, inlet, etc.)
takes the form of a standing wave with a node at the
open end and an anti-node at the closed end (Fig.
5b). If there are no other nodes between the ends,
the length of the open basin is a quarter wavelength,
and the natural period of oscillation is given ap-
proximately as

(162 T, = 2L = 4L

c (D)

Free oscillations of water in basins (open or closed)
are called seiches. Much of the early study of
seiches was done on lakes in Switzerland, and the
equations 1.6.1 and 1.6.2 are called Merian’s for-
mulae after one of the Swiss workers in this field.

Figure 6 illustrates how the tide at the entrance to
an inlet off a large body of water drives a forced
oscillation in the inlet in the form of a standing
wave with an anti-node at the head of the inlet. If,

2 Plan View of Inlet o
| N
cT/4

Tidal Range Envelope

Fic. 6. Amplification of tide in an inlet, driven as a forced
oscillation by the tide in a large body of water at entrance.

as is usually the case, the inlet is shorter than a
quarter of the tidal wavelength, the standing wave
will have a virtual node outside the entrance. It is
apparent that the amplitude of the tidal oscillation at
the head of the inlet is greater than at the entrance,
and that the amplification would be greatest if the
node fell right at the entrance; the latter situation
corresponds to the condition for resonance. If L is
the length of the inlet, D its mean depth, ¢ = (gD)”
the wave speed in the inlet, and T the tidal period,
then the tidal wavelength is ¢T and the portion of a
wavelength within the inlet is L/cT. This represents
a phase angle along the x-axis from the head of the
inlet of kx = 2wL/cT. Thus, if H, is the amplitude
at the head and H, that at the entrance of the inlet,
by 1.5.6,

(1.6.3) H, = H, cos 2L
cT

or Mz = gec 27L

H/ cT

The amplification factor, H,/H,, in 1.6.3 is seen to
be infinite for 4. = ¢T, which is the resonance




(L LN U L S A
3y} Jo AS3UN0D 0J0Yd) "WRALS [Ep1} Suons ai ul papuadsns pues pue 13Jem Aq sadeys [ensnun ojul paULIO} PUE papOId U3dq aaey $001 3Y ],
“1o1BM MO] I8 * Kpuny jo Aeg 9y} Jo pua Jauul 3y Je eg 0)53uF1yD) UO *YoImsunig maN ‘[[amadoH ade) 1e (, s1odiomop) ayy,,) $300Y lomadoH ‘1 4LV 1d

-
A
-
-
A
—
ad—-.
A
—-
—
——
ot
"

b

OTTIRRRRERRR
TITIIISRRRRRE

H

UL
UL




e T L

TSI OT AT

PLATE 2. Fishermen checking salmon fishing weir at low water near Saint John. New Brunswick. Fish are
carried into and trapped by the weir because of the strong tidal flow: they are then fished out of the ‘
weir at low water. (Photo by R. Brooks. NFB Phototeque. 1964.) ;



PLATE 3. View of jetty and “mattress” at low water, Parrsboro. Nova Scotia. on the north shore of Minas Basin, at the inner end
of the Bay of Fundy. (Photo by R. Belanger, Bedford Institute of Oceanography.)




PLATE 4. MV Theta resting on wooden “mattress” beside jetty at low water, Parrsboro. Nova
Scotia. (Photo by Canadian Hydrographic Service. 1960.)
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PLATE 5. Corresponding view

s of jetty at Parrsboro, Nova Scotia, at extreme low water

(upper) and high water (lower). (Photos by C. Blouin, NFB Phototeque, 1949.)




condition (tidal period, T, equal natural period,
4L/c). However, friction, which we have neglect-
ed, becomes very important near resonance, and
formula 1.6.3 should not be used for systems near
resonance. The Saguenay fjord provides an ex-
ample of tidal amplification in a system that is not
near resonance. The length from the entrance off
the St. Lawrence Estuary at Tadoussac to the head
of the fjord at Port Alfred is 95 km (L), the mean
value of the long-wave speed in the fjord is
40 mv/s (c), and the tidal period is 12.4 h (T). From
this, 1.6.3 gives the amplification factor as

Hy/H, = sec(0.33 rad.) = sec 19° = 1.06.

The actual amplification of the tide range at Port
Alfred over that at Tadoussac is 1.16. The extra
amplification over that predicted is probably
caused by shoaling (see section 1.12) of the tide
wave in the shallow water near the head. An ex-
ample of a system that is nearly in resonance with
the semidiurnal (T = V2—d) tide is the system com-
prising the Gulf of Maine and the Bay of Fundy.
The ocean basins themselves have natural pe-
riods of oscillation, but their modes of oscillation
are much too complicated to be revealed by the
simple considerations above. However, calcula-
tion of the natural period of east—west oscillation of
the Atlantic and Pacific oceans from Merian’s for-
mula, 1.6.1, provides the interesting information
that the Atlantic Ocean is more closely tuned to the
semidiurnal and the Pacific Ocean more closely
tuned to the diurnal tidal frequencies. Taking east—
west widths of 4 500 and 8 000 km, respectively,
for the Atlantic and Pacific and a mean depth of
4 000 m for both, 1.6.1 gives 12.6 and 22.3 h,
respectively, as the natural periods of the Atlantic
and Pacific for east—west oscillation. Pacific tides
are indeed observed to have much more diurnal
character in general than the Atlantic tides.

1.7. Internal waves

These are waves that occur below the surface at
the interfaces between layers of water of different
densities (i.e. in “stratified” water). They may exist
independently from any surface wave, but are
sometimes induced as a secondary effect of surface
waves. Internal tides are frequently formed by the
partial reflection of a surface tide wave at a sudden
rise in bottom topography. The simplest case to
consider is that of a wave at the interface in a
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Fic. 7. Internal wave at the interface of a two-layer system.
Hollow arrows show particle velocities; single line arrows
show direction of wave propagation.

two-layer system as shown in Fig. 7. The sub-
scripts, 1 and 2, refer to the upper and lower layers,
respectively, and p is the density, & the layer thick-
ness, and u the particle velocity (with amplitude
U). The wave form at the interface is that of a long
progressive wave traveling from left to right with
wave speed ¢;. The restoring force in this internal
wave is not the full force of gravity, g, per unit
mass, but is the buoyancy force gAp/p, where Ap is
the density difference p, — py, and p is the mean
density.

By reasoning that is just a little more difficult
than that in section 1.5 for a surface wave, it can be
shown that :

C-; — g(Pz — pl)

a.7.1) ¢
2+
B h
(1.7.2) - U, = Sl
h,
and
(1.7.3) U, = SiHi
h,

where H; is the amplitude of the internal wave at the
interface. If we had wished, we could have treated
surface waves as special cases of internal waves at
the air—water interface, taking p, and p, as the
densities of air and water, &, as the thickness of the
atmosphere, and h; as the depth of the water. Put-
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ting p;<<p; and k<A, to comply with this, reduces
1.7.1 approximately to

c? = glp2) _ ghy,
(7]
hy
in agreement with our previous expression 1.5.4.

If, as is always the case for stratified water, p; and
p, are nearly equal, 1.7.1 simplifies to

hh, )
h + h
and if it is further assumed that the upper layer is

much thinner than the lower layer, as is frequently
the case, this simplifies further to

(1.7.5) ¢? = gh, (%p)

(17.4) 2 =g (%")(

Admittedly the two-layer system of Fig. 7, with
its discontinuity in density and particle velocity at
the interface, could never occur in a natural body of
water. However, the equations 1.7.1, 2 and 3 re-
veal the following important characteristics of in-
ternal waves:

1) Their wave speeds, and hence their
wavelengths, are much less than those of sur-
face waves of the same frequency.

2) The particle velocities of internal waves, un-
like those of surface waves, may reverse phase
and have different amplitudes at different
depths. '

3) They can exist only in stratified water.

4) They may have very large amplitudes (tens of
metres) because the restoring force is so small.

5)  Although their vertical amplitude is zero at the
free surface, their particle velocities are usual-
ly greatest there, because of a thin surface
layer of less-dense water.

Internal tides are internal waves of tidal frequen-
cy, and these have been observed in the St. Law-
rence Estuary. Semidiurnal internal tides were
observed in the estuary below Tadoussac with
wavelengths of about 60 km. Their presence
helped to explain the tidal streams in the area,
which could not be satisfactorily accounted for by
the surface tide alone. The water column in the
estuary can be very crudely represented as two
layers with o, = 50 m, hy = 250 m, and
Ap/p = 0.003. Substitution of these values, along
with g = 9.8 m/s? into 1.7.4 gives a wave speed

of 1.1 m/s, or 4.0 km/h, corresponding to a
wavelength of 49 km for the semidiurnal tidal per-
iod of 12.4 h.

1.8. Coriolis acceleration

Newton’s classical laws of motion apply only
when all measurements are made with respect to an
inertial coordinate system, that is, one that is nei-
ther accelerating nor rotating. Thus, when
measurements are made relative to a coordinate
system fixed in the earth, allowance must be made
for the rotation of the earth about its axis. This is
done by providing two “fictitious forces,” the cen-
trifugal force and the Coriolis force, in addition to
the apparent forces that cause acceleration of a
body relative to the surface of the earth. A mass
resting on the earth’s surface is actually revolving
about the earth’s axis on a latitude circle once each
day, and so is accelerating toward the centre of that
circle. The inertia of the mass resists this centripetal
acceleration, and, to an earth-bound observer, the
mass appears to be pulled away from the axis by
what he calls the centrifugal force. Since it varies

Q

>

[e———

rcos ¢ CF

/_//
4\

} Equator

/

G = Gravitational attraction
g = Gravity
CF=Q2rcos ¢ = centrifugat force
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duce “gravity” (g).




only with latitude and not with time, the centrifugal
force (CF) is conveniently combined with the
earth’s gravitational attraction (G) in what we know
as “gravity” (g). Figure 8 depicts the vector addi-
tion of the two forces to give gravity, with the
relative size of the centrifugal force vector greatly
exaggerated for clarity. The centrifugal force is
obviously greatest at the equator and zero at the
poles, contributing to the fact that gravity is less at
the equator than at the poles.

A body in motion relative to the surface of the
earth experiences an acceleration to the right of its
horizontal direction of travel in the Northern
Hemisphere (to the left in the Southern Hemi-
sphere), an acceleration that is proportional to its
velocity and to the sine of the latitude. This
acceleration is also a result of the earth’s rotation,
and is allowed for in the Coriolis force. Figure 9
attempts to illustrate the origin of this force. There
is a Coriolis force on objects moving vertically and
a vertical component of Coriolis force on objects
moving horizontally, but we will consider only the
horizontal component of the Coriolis force on ob-
jects moving horizontally. Imagine the earth to be
covered with a frictionless film, the surface of
which conforms to that of a level surface, i.e. is
everywhere normal to the direction of gravity. N
and S are the north and south poles, and () is the
earth’s angular velocity. As abody moves to higher
latitude, the easterly velocity of the earth’s surface
decreases, and so the easterly velocity of the body
relative to the earth increases. This is seen as an
acceleration to the right in the Northern Hemi-
sphere and to the left in the Southern Hemisphere.
Special cases of this are shown for a body projected
south from N and for one projected north from S.
Viewed from an inertial coordinate system both of
these bodies would travel along the great circle NS,
with no east-west velocity. Relative to the earth,
however, they appear to follow the paths NM and
ST, acquiring westerly velocity components as
they move to lower latitudes, and so accelerating to
the right in the Northern Hemisphere, and to the left
in the Southern Hemisphere.

The Coriolis force due to the east—west velocity
component arises from the fact that an easterly
moving body experiences centrifugal force in ex-
cess of that included in gravity, and this excess
centrifugal force has a component that accelerates
the body along the level surface toward the equator.
Similarly, a westerly moving body experiences a
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centrifugal force less than that in gravity and is
accelerated along the level surface toward the pole.
These accelerations are again seen to be to the right
of the velocity in the Northern Hemisphere and to

Fii. 9. Diagram to illustrate the origin of the Coriolis force, or
acceleration.

the left in the Southern Hemisphere. This effect is
illustrated at points A and D for easterly velocity
and at points B and C for westerly velocity. The
velocity vector at each point is directed into the
page. The vectors d represent a deficit and vectors e
an excess of centrifugal force over that allowed for
in gravity for a body at rest on the surface. Their
horizontal components are the horizontal Coriolis
forces. Points E and E' show that for an east—west
velocity at the equator the Coriolis force has only a
vertical component. There is no horizontal Coriolis
force for a north—south velocity at the equator be-
cause the rate of change of the earth’s surface
velocity with latitude is zero there. This can all be
summed up in the statement that the horizontal
component of the Coriolis force acting on a body
moving with velocity v over the earth’s surface acts
to the right of the velocity in the Northern Hemi-
sphere and to the left in the Southern Hemisphere,
and has magnitude 2Qv sing, where ¢ is the lati-
tude. 2€) sing is called the Coriolis parameter,
usually denoted as f.
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The Coriolis force is rarely noticeable in labora-
tory-scale measurements, but is very significant in
large-scale geophysical motions such as winds,
ocean currents, and tides. It is this force that im-
parts the cyclonic and anti-cyclonic circulation to
the atmosphere around low and high pressure re-
gions and turns the ocean current systems into large
circular gyres. It also acts on the tidal streams,
changing the direction of propagation and the shape
of the tide waves. When the tide propagates as a
progressive wave along a channel in the Northern
Hemisphere (NH), the range of the tide is observed
to be greater on the shore to the right of the direction
of propagation. This is because the tidal streams at
HW are in the direction of propagation, and the
Coriolis force acting on them moves water to the
right until a slope of the surface is created to bal-
ance it. This raises the HW on the right shore and
lowers it on the left. At LW the tidal streams are in
the opposite direction, and the surface slope created
to balance the Coriolis force lowers the LW on the
right shore and raises it on the left. When the
channel width is small compared to the tidal
wavelength, only insignificant cross-channel tidal
streams are required to create the surface slopes
referred to above. Most channels are much nar-
rower than the half wavelength of the surface tide
required for resonance, but many may have a width
comparable to the half wavelength of an internal
tide. This is the case in the St. Lawrence Estuary,
where the Coriolis force acts on an internal tide
propagating seaward to produce strong Ccross-
channel tilting of the interface between density
layers, with correspondingly strong cross-channel
tidal streams oppositely directed in the two layers.

1.9. Inertial currents

The Foucault pendulum is one of the few labora-
tory experiments that can demonstrate the effect of
earth rotation (Coriolis force) on a body in motion.
It consists of a heavy mass suspended on a long
single filament swinging freely through a small arc.
The vertical plane of the oscillation is observed to
rotate through 360° in a period of (24/sin¢g) hours,
which period is referred to as the pendulum day. It
is easiest to visualize this phenomenon for the
special case of a pendulum suspended directly over
the North or South Pole and swinging back and
forth in a plane fixed in space, while the earth

rotates once in 24 h beneath it. If it were possible to
design such a pendulum to have a period of oscilla-
tion equal to one pendulum day, it would be
observed to travel around in a circle once each half
pendulum day. Again it is easiest to visualize this at
one of the earth’s poles: the pendulum would start
tracing a circle at the centre of its swing and com-
plete the circle when it returned again to the centre a
half period later; by this time the earth would have
rotated 180°, so the circle traced by the pendulumin
the next half period would fall on top of the first
circle. To explain this circular motion in a coordin-
ate system fixed to the earth it would be necessary
to invoke, in addition to gravity, the centrifugal
force due to the circular motion and the Coriolis
force due to the motion relative to the surface.
The above thoughts are pertinent to the con-
sideration of what are called inertial currents.
Water in the ocean that has been set in motion and is
now drifting under its own inertia could be ex-
pected to keep deflecting to the right (NH) or left
(SH) until it is moving in a circle (clockwise in the
NH, counterclockwise in the SH) such that the
centrifugal force away from the centre of the circle
just balances the Coriolis force toward the centre.
This is called the inertial circle. The time taken to
complete the circle is the inertial period, and will
be seen to equal one half pendulum day. If the water
is moving at speed v in a circle of radius r, the
centrifugal force away from the centre is v?/r.
Let f be the Coriolis parameter at the latitude
@ (f= 2€) sin @), so that the Coriolis force toward
the centre is fv. The balance of forces is therefore

(1.9.1) fv = v%r, whence r = vif

The circumference of the inertial circle is thus
2wr = 2mvif, and the time taken to travel around
the circumference is the inertial period, T;, so

192) T, = ol = 2m — _2m
( ) 4 ™ f 2Qsing
Since @ = — 2T T, = LZ_ hours

24 hours sing

The inertial period is seen to be the half pendu-
lum day as anticipated. This is a period that is
frequently detected in ocean current measure-
ments. At45° latitude itis 17 h, at 30° it is 24 hours,
and at 75° it is 12.4 hours (the same as the semidiur-
nal tidal period). From 1.9.1 the radius of the
inertial circle is seen to be proportional to the cur-




rent speed for a given latitude. At 45° latitude the
radius for a | km/h currentis 2.7 km, and at the pole
it is 1.9 km. At the equator the radius is infinite,
meaning there are no inertial circles there since the
Coriolis force is zero. It should be noted that the
motion in an inertial circle is not that of an eddy,
and that all parts of the water are moving in the
same direction at the same time in inertial motion.
For those versed in carpentry a helpful analogy
might be that of the movement of an orbital sanding
plate (cf. inertial motion) versus the movement of a
rotary sanding disk (cf. eddy motion).

1.10 Amphidromic systems

The word amphidrome is from the Greek for “a
round race course,” and describes a system in
which wave crests propagate like the spokes of a
wheel around a central amphidromic point, with
wave amplitude increasing outward from zero at
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Fic. 10. Amphidromic system in a coastal embayment. Open
arrows show the tidal streams (particle velocities).

the centre. Figure 10 illustrates the formation of an
amphidromic system in a coastal embayment by the
action of the Coriolis force on what would other-
wise be a simple standing wave. Let the embay-
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ment be greater than a quarter wavelength long, so
that in the absence of earth rotation there would be a
nodal line across the embayment at BB', with high
water (HW) at A coinciding with low water (LW) at

A’ and vice versa. Letus now add earth rotation and
follow the oscillation through one period (7), start-
ing with HW at A at time ¢+ = 0. From ¢t = 0O to
t = T/2, there is an axial flow through P from A to
A’, and the resulting Coriolis force to the right sets
up a cross flow component from B to B’ sufficient
to create a surface slope that balances the Coriolis
force. Since the axial flow is greatest at t = T/4,
the surface slope across the embayment is also
greatest then, giving a HW at B’ and a LW at B at
t = T/4. Att = T/2 HWisatA' and LW atA, asin
the ordinary standing wave. At = 37/4 the axial
flow through P from A’ to A is maximum, and HW
will be at B with LW at B’, to provide the surface
slope necessary to balance the Coriolis force on the
outflowing water. Thus, in the Northern Hemi-
sphere earth rotation can convert a simple standing
wave in a basin into an amphidromic system (or
amphidrome), in which the crest travels counter-
clockwise around the perimeter of the basin about a
pivotal point, P, called the amphidromic point. The
vertical amplitude is zero at P and the particle
velocity reaches its maximum there, but now the
particle velocity vector rotates counter-clockwise,
tracing out an ellipse. The amplitudes of the wave
at B and B’ and of the particle velocity across the
basin depend on the geometry and size of the basin
and the length of the period of oscillation relative to
that of the half pendulum day. The origin and
nature of amphidromes in the open ocean are less
simple than those described above, and sometimes
the sense of rotation is opposite to that in an embay-
ment. Figure 29 shows the amphidromic system of
the semidiurnal tide wave in the Gulf of St. Law-
rence, and Fig. 30 shows an amphidrome of the
diurnal tide wave in the Atlantic Ocean off Nova
Scotia.

1.11 Tides and tidal streams

Since the tide propagates as a set of long waves in
the ocean, much of the character of its vertical and
horizontal motion has been revealed in the preced-
ing consideration of long waves. The terms defined
in section 1.2 to describe the characteristics of a
wave are also applied to tides, but some special
tidal terms are uséd as well. The definitions given
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here conform as closely as possible to common
usage in Canadian tidal literature. In atide wave the
horizontal motion, i.e. the particle velocity, is
called the tidal stream. The vertical tide is said to
rise and fall, and the tidal stream is said to flood and
ebb. If the tide is progressive, the flood direction is
that of the wave propagation: if the tideis a standing
wave, the flood direction is inland or toward the
coast, i.e. “upstream.” The flow is the net horizon-
tal motion of the water at a given time from whatev-
er causes. The single word “current” is frequently
used synonymously with “flow”,” but the term
residual current is used for the portion of the flow
not accounted for by the tidal streams. A tidal
stream is rectilinear if it flows back and forth in a
straight line, and is rotary if its velocity vector
traces out an ellipse. Except in restricted coastal
passages, most tidal streams are rotary, although
the shape of the ellipse and the direction of rotation
may vary. The ellipse traced out by a tidal stream
vector is called the tidal ellipse. Slack water refers
to zero flow in a tidal regime. The stand of the tide
is the interval around high or low water in which
there is little change of water level: this need not
coincide with slack water.

In a purely progressive surface tide, maximum
flood occurs at HW, maximum ebb occurs at LW,
and slack water occurs at mid-tide rising and fall-
ing. In a purely standing surface tide, the slack
waters occur at HW and at LW, maximum flood
occurs at mid-tide rising, and maximum ebb occurs
at mid-tide falling. This follows from the discus-
sion in section 1.5, and is illustrated in Fig. 5 for
long waves in general. Except for some frictional
effect near the bottom, the tidal streams associated
with a surface tide are the same from top to bottom.
I tidal streams are observed to vary in speed, phase
or direction over the water column, the presence of
an internal tide is indicated. The average tidal
stream in such a case belongs to the surface tide,
and the departures at various depths from this aver-
age are the tidal streams belonging to the internal
tide. This situation presents the possibility for slack
water to occur at different times at different depths.
Figure 11 illustrates various flow patterns that may
result from the vector addition of a residual current
and a rectilinear or a rotary tidal stream. It is seen
that a rectilinear tidal stream experiences slack
water twice during each period (Fig. 11a) unless it
is accompanied by (1) aresidual current in the same
direction but with speed greater than the tidal stream

amplitude, in which case the flow is unidirectional
with varying speed (Fig. 11b), or (2) a residual
current in a different direction from that of the tidal
stream, in which case the flow changes direction
through a small angle (Fig. 11¢). It is also apparent
from Fig. 11 that a rotary tidal stream rarely experi-
ences slack water, but that its direction changes
through 360° in each cycle (Fig. 11d) unless the
speed of the residual current exceeds or equals the
amplitude of the tidal stream in that direction (Fig.
11e and f). In the latter cases, the direction of the
flow swings back and forth through an angle less
than or equal to 180°.

Since the observed tide consists not of a single
wave, but of the superposition of many tide waves
of different frequency and amplitude, it will never
fit exactly any of our simple descriptions. Because
of this, we cannot expect the heights of successive
HWs or of successive LWs to be identical, even
when they occur in the same day. Thus, the two
HWs and two LWs occurring in the same day are
designated as higher and lower high water (HHW
and LHW), and higher and lower low water (HLW
and LLW). It is likewise only the tidal stream
associated with a single frequency tide wave that
traces a perfect tidal ellipse. The composite tidal
stream each day traces a path more closely resem-
bling a double spiral, with no two days’ patterns
identical. Also, no tide is ever a purely progressive
or a purely standing wave, SO that slack water
should not be expected to occur at the same interval
before HW or LW at all locations.

1.12. Shallow-water effects

One of our assumptions in the discussion of long
waves of sinusoidal form was that the amplitude
was much less than the depth. When a tide pro-
pagates into shatlow water, this assumption may no
longer be valid, and, as might be expected, the
wave form is distorted from its sinusoidal form. In
such shallow water the crest is found to propagate
faster than the trough, producing a steeper rise and
a more gradual fall of the water level as the tide
wave passes. Figure 12 demonstrates this effect on
the St. Lawrence River tide between Neuville and
Trois Rividres. The outflow of the river and the
bottom friction contribute to the distortion of the
wave. The tide in this part of the St. Lawrence
River is attenuated by friction as it progresses up-
stream, and is not reflected to produce a standing
wave.
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Fic. 11. Flow patterns resulting from combination of various residual currents with rectilinear and rotary tidal streams.
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Tides in the open ocean are usually of much
smaller amplitude than those along the coast. As
mentioned earlier, this is partly due to amplifica-
tion by reflection and resonance. It is, however,
more generally the result of shoaling: as the wave
propagates into shallower water, its wave speed
decreases and the energy contained between crests
is compressed both into a smaller depth and a
shorter wavelength. The tide height and the tidal
stream strength must increase accordingly. If, in
addition, the tide propagates into an inlet whose
width diminishes toward the head, the wave energy
is further compressed laterally. This effect, called
funneling, also causes the tide height to increase.

Sometimes the front of the rising tide propagates
up ariver as a bore, a churning and tumbling wall of
water advancing up the river not unlike a breaking
surf riding up a beach. Creation of a bore requires a
large rise of tide at the mouth of the river, some
sandbars, or other restrictions at the entrance to
impede the initial advance of the tide, and a shallow
and gently sloping river bed. Simply stated, the
water cannot spread uniformly over the vast shal-
low interior area fast enough to match the rapid rise
at the entrance. Friction at the base of the advancing
front, plus resistance from the last of the ebb flow
still leaving the river, causes the top of the advanc-
ing front to tumble forward, sometimes giving the
bore the appearance of a travelling waterfall. There
are spectacular bores a metre or more high in sever-
al rivers and estuaries of the world. The best known
bore in Canada is that in the Petitcodiac River near
Moncton, N.B., but there is another in the
Shubenacadie River and in the Salmon river near
Truro, N.S., all driven by the large Bay of Fundy
tides. These are impressive (about a metre) only at
the time of the highest monthly tides, and may be
no more than a large ripple during the smallest
tides.
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The reversing falls near the mouth of the St. John
River at Saint John, N.B. is also caused by the large
Bay of Fundy tides and the configuration of the
river. A narrow gorge at Saint John separates the
outer harbour from a large inner basin. When the
tide is rising most rapidly outside, water cannot
pass quickly enough through the gorge to raise the
level of the inner basin at the same rate, so on this
stage of the tide the water races in through the
gorge, dropping several metres over the length of
the gorge. When the outside tide is falling most
rapidly, the situation is reversed, and the water
races out through the gorge in the opposite direc-
tion, again dropping several metres in surface
elevation. Twice during each tidal cycle, when the
water levels inside and out are the same, the water
in the gorge is placid and navigable. The surface of
the water in the gorge near the peak flows is violent-
ly agitated and the velocity of flow is too rapid and
turbulent to permit navigation through the gorge.
This phenomenon is called a tide race in other less
notorious situations.

A tide rip or overfall is an area of breaking waves
or violent surface agitation that may occur at certain
stages of the tide in the presence of strong tidal
flow. They may be caused by a rapid flow over an
irregular bottom, by the conjunction of two oppos-
ing flows, or by the piling up of waves or swell
against an oppositely directed tidal flow. If waves
run up against a current, the wave form and the
wave energy are compressed into a shorter
wavelength, causing a growth and steepening of the
waves. If the current is strong enough, the waves
may steepen to the point of breaking, and dissipate
their energy in a wild fury at sea. Violent tide rips
may be formed in this way.
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PLATE 6. The Reversing Falls at Saint John, New Brunswick, at the mouth of the St. John River. The upper photo is an aerial
view at slack water, showing the inner basin, the outer harbour. and the bridge over the gorge that separates them.
Lower left shows the inflow through the gorge at high water in the outer harbour (7.6 m above chart datum at time of
photo). Lower right shows the outflow through the gorge at low water in the outer harbour (0.9 m above chart datum at
time of photo). The recorded extreme high and low waters at Saint John are 9.0 4 m. respectively, above chart
datum. and at these times the flows would have been correspondingly greater. (Upper photo by Lockwood Survey,
NEB Phototeque, 1966: Lower photos by D.G. Mitchell. Canadian Hydrographic Service, 1963.)




PLATE7. (Upper) Tidal bore on the Petitcodiac River at Moncton, New Brunswick. (Photo by
D.G. Mitchell, Canadian Hydrographic Service, 1960.); (Lower) Tidal bore on the
Salmon River, near Truro, Nova Scotia. (Photo by F.G. Barber, Ocean Scicnce and
Surveys, DFO, 1982.)



